Ready Nucleophilic Ring Opening of β -Epoxy-sulphone, -sulphoxide, and -ester with Grignard Reagents

Rikuhei Tanikaga,* Ken Hosoya, and Aritsune Kaji

Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Treatment of β -epoxy-sulphone, -sulphoxide, and -ester with Grignard reagents and copper(I) iodide in diethyl ether-tetrahydrofuran at low temperature leads to rapid ring opening without loss of chirality.

Organometallic compounds such as organocuprates are useful reagents for nucleophilic ring opening of epoxides,^{1—3} and the treatment of epoxides containing a carbonyl group at the α -position with organocuprates results in nucleophilic ring

Table 1. Reaction of epoxides (1) with Grignard reagen	ts (3) and CuI
in Et ₂ O-THF. ^a	

(1)	(3); R	% Yield of (4)
(1 a)	Me	88
(1 a)	$[CH_2]_6Me$	83 (67ь)
(1a)	$[CH_2]_{11}Me$	72 (34ь)
(1a)	$[CH_2]_2Ph$	80
(1a)	Ph	95
(1a)	\mathbf{Pr}^{i}	50
(1b)	$[CH_2]_6Me$	80
(1b)	$[CH_2]_2$ Ph	72
(1c)	$[CH_2]_6$ Me	57
(1c)	[CH ₂] ₂ Ph	62
(1c)	Ph	91

a v/v 1:1. b THF solvent.

opening.⁴ However, the epoxides (1) containing an electronwithdrawing group Z at the β -position are known to be labile even under mildly basic conditions and to undergo eliminative ring fission giving the allyl alcohols (2).^{5.6} Here we report the rapid nucleophilic ring opening reactions of (1) using Grignard reagents (3) and CuI.

To CuI (1.5 equiv.) in Et₂O a solution of (3) (1.5 equiv.) in tetrahydrofuran (THF) was added under argon at -60 °C, followed by a solution of (1) in Et₂O-THF (v/v 1:1). The reaction was completed in 1 min. After quenching with aqueous NH₄Cl and the usual work-up, column chromatography on silica gel gave the alcohols (4), as shown in Table 1. Optically pure (S)-(1a) [100% enantiomeric excess (e.e.)] was prepared by the stereoselective reduction of 1-chloro-3phenylsulphonylacetone with baker's yeast⁷ and subsequent ring closure with silver oxide.⁸ Similar treatment of (S)-(1a) with heptylmagnesium bromide and CuI afforded (S)-1phenylsulphonyldecan-2-ol (100% e.e.) in 83% yield.

The reaction in THF was accompanied by the formation of (2) because of eliminative ring fission, while the experiment using Et_2O was restricted by the insoluble character of the

RMgBr + (1)
$$\xrightarrow{H}$$
 R-CH₂CH(OH)-CH₂Z
(3) (4)
a; SO₂Ph
b; S(O)Ph
c; CO₂Et

Scheme 1. Reagents: i, base; ii, CuI, Et₂O-THF, -60 °C.

reagents. When the reaction was carried out at room temperature, (2) was obtained quantitatively. These findings suggest that the co-ordination of the metal to the oxygen atom at the epoxy group may play an important role in the formation of (4).⁹ It is interesting to note that the selectivity

between these two rapid reactions shown in Scheme 1 can easily be achieved by changes in experimental conditions.

Received, 18th February 1986; Com. 222

References

- 1 G. H. Posner, 'Organic Reactions,' ed. W. G. Dauben, Wiley, New York, 1975, vol. 22, p. 253. 2 J. Mathieu and J. Weill-Raynal, 'Formation of C-C Bonds,' G.
- Thieme, Stuttgart, 1975, vol. 2, p. 244.
- 3 B. H. Lipshutz, R. S. Wilhelm, and J. A. Kozlowski, Tetrahedron, 1984, 40, 5005.
- 4 J. M. Chong and K. B. Sharpless, Tetrahedron Lett., 1985, 26, 4683 and references cited therein.
- 5 C. J. M. Stirling, Chem. Rev., 1978, 78, 517 and references collected therein.
- 6 C. J. M. Stirling, Acc. Chem. Res., 1979, 12, 66; R. J. Palmer and C. J. M. Stirling, J. Am. Chem. Soc., 1980, 102, 7888.
- 7 S. Iriuchijima and N. Kojima, Agric. Biol. Chem., 1978, 42, 451.
 8 J. D. McClure, J. Org. Chem., 1967, 32, 3888.
- 9 P. Beltrame, G. Gelli, and A. Loi, J. Chem. Soc., Perkin Trans. 2, 1976, 1001.